A New Representation for the Solutions of Fractional Differential Equations with Variable Coefficients

نویسندگان

چکیده

A recent development in differential equations with variable coefficients by means of fractional operators has been a method for obtaining an exact solution infinite series involving nested integral operators. This representation is constructive but difficult to calculate practice. Here, we show new the function, as convergent single integrals, which computationally simpler and believe will quickly prove its usefulness future computational work applications. In particular, constant coefficients, given Mittag-Leffler function. We also some applications Cauchy problems both time-fractional space-fractional time-dependent coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear fractional differential equations with variable coefficients

This work is devoted to the study of solutions around an α-singular point x0 ∈ [a, b] for linear fractional differential equations of the form [Lnα(y)](x) = g(x, α), where [Lnα(y)](x) = y(nα)(x)+ n−1 ∑ k=0 ak(x)y (kα)(x) with α ∈ (0, 1]. Here n ∈ N , the real functions g(x) and ak(x) (k = 0, 1, . . . , n−1) are defined on the interval [a, b], and y(nα)(x) represents sequential fractional deriva...

متن کامل

New Operational Matrix For Shifted Legendre Polynomials and Fractional Differential Equations With Variable Coefficients

This paper is devoted to study a computation scheme to approximate solution of fractional differential equations(FDEs) and coupled system of FDEs with variable coefficients. We study some interesting properties of shifted Legendre polynomials and develop a new operational matrix. The new matrix is used along with some previously derived results to provide a theoretical treatment to approximate ...

متن کامل

Some New Uniqueness Results of Solutions for Fractional Volterra-Fredholm Integro-Differential Equations

This paper establishes a study on some important latest innovations in the uniqueness of solution for Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Banach contraction  principle and Bihari's inequality.  A wider applicability of these techniques are based on their reliability and reduction in the size of the mathematical work.

متن کامل

An Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients

In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...

متن کامل

Existence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations

In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2022

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-022-02228-7